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We demonstrate how to model the toppling activity in avalanching systems by stochastic differential equa-
tions �SDEs�. The theory is developed as a generalization of the classical mean-field approach to sandpile
dynamics by formulating it as a generalization of Itô’s SDE. This equation contains a fractional Gaussian noise
term representing the branching of an avalanche into small active clusters and a drift term reflecting the
tendency for small avalanches to grow and large avalanches to be constricted by the finite system size. If one
defines avalanching to take place when the toppling activity exceeds a certain threshold, the stochastic model
allows us to compute the avalanche exponents in the continum limit as functions of the Hurst exponent of the
noise. The results are found to agree well with numerical simulations in the Bak-Tang-Wiesenfeld and Zhang
sandpile models. The stochastic model also provides a method for computing the probability density functions
of the fluctuations in the toppling activity itself. We show that the sandpiles do not belong to the class of
phenomena giving rise to universal non-Gaussian probability density functions for the global activity. More-
over, we demonstrate essential differences between the fluctuations of total kinetic energy in a two-dimensional
turbulence simulation and the toppling activity in sandpiles.
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I. INTRODUCTION

The aim of this paper is to present a consistent framework
for the modelling of temporal fluctuations, including defini-
tion and computation of avalanche exponents, in sandpile
�height� models such as the Bak-Tang-Wiesenfeld �BTW�
and Zhang models �1,2�. One of the defining properties of
self-organized criticality is that the probability density func-
tions �PDFs� of avalanche duration and size are quantities
subject to scaling—i.e., pdur�����−� and psize�s��s−� �3,4�.
The calculation of the exponents � and � in the thermody-
namic limit N→� �Nd is the number of sites in the
d-dimensional lattice� has proven to be a difficult task in
dimensions d=2 and d=3. This is partly due to the lack of
simple finite-size scaling in models such as the BTW sand-
pile �3�. Moreover, it has recently been pointed out �5� that
the difficulty may originate from the fact that the � and s do
not scale when defined in the traditional sense, which is to
consider the duration of an avalanche as the time interval
where toppling takes place between two successive zeros in
the toppling activity. In this paper we shall denote avalanches
defined this way as type-I avalanches.

The scaling property can be restored, however, if one de-
fines the duration of an avalanche as the time interval when
the toppling activity x�t� exceeds a prescribed threshold xth.
We shall use the term type-II avalanches when the start and
end of an avalanche is determined via such a threshold cri-
terion. The idea of using a threshold on the toppling activity
in the definition of avalanches was first introduced in �6�,
where it was argued that any avalanche analysis of real-
world activity time series must define avalanches from a
threshold, since there is no way to uniquely determine
whether a non-negative continuous-valued experimental
quantity is actually zero or just small. For type-II avalanches
it can be shown by numerical simulation that the quiet times
between avalanches in the BTW model are power-law dis-

tributed. For type-I avalanches the quiet times only depend
on the statistics of the driver, which is usually assumed to be
Poisson distributed.

The present work represents the first systematic investiga-
tion of type-II avalanche statistics for the BTW and Zhang
sandpiles. We are particularly interested in the continuum
limit where the system size L=1 is considered fixed and the
spatial resolution increases as N→�. The power-law statis-
tics of avalanche observables have cutoffs for large ava-
lanches due to the finiteness of the system, but as we increase
the resolution, we see an increasing range of scaling for
smaller avalanches. As N→�, we keep the threshold fixed
relative to the time-averaged activity �x�, which scales as
�x��ND1, where 0�D1�2. For the BTW sandpile, numeri-
cal simulation yields D1�0.86 �5�. This means that the num-
ber of overcritical sites corresponding to the threshold value
diverges like xc�ND1 in the limit N→�.

We model the toppling activity in the continum limit by a
stochastic differential equation �7� for a normalized toppling
activity X�t�. In its simplest form this equation is in the form

dX�t� = �	X�t�dW�t� , �1�

where W�t� is the Wiener process. Without the factor 	X�t�
on the right-hand side we would simply have that X�t�
=�W�t�+X0 is a Brownian motion with diffusion coefficient
D=�2 /2. This factor, however, gives rise to a nonuniform
�X-dependent� diffusion coefficient D=�2X�t� /2, and the sto-
chastic process X�t� will have nonstationary increments. This
model can be perceived as a continuous version of the clas-
sical mean-field theory of sandpiles �8�. We use its corre-
sponding Fokker-Planck equation to derive that �=2 and �
=3 /2 when avalanches are defined in the type-I sense. This
is the same result obtained by mean-field theory �3,4,8�. For
type-II avalanches the effect of the nonuniform diffusion co-
efficient vanishes for avalanches of durations short compared
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to that of a system-size avalanche, and for the purposes of
calculating � and � we can assume that the the toppling
activity is a standard Brownian motion. Solving the Fokker-
Planck equation for Brownian motion �or equivalently using
the known distribution of first return times in Brownian mo-
tion� we obtain �=3 /2 and �=4 /3.

For the modeling of nontrivial sandpile models �BTW and
Zhang� the stochastic differential equation takes the form

dX�t� = f�X�dt + �	X�t�dWH�t� . �2�

Two important generalizations of the stochastic model are
included here. First, from numerical simulations of sandpiles
we find that for small activities X�t� there is an effective
positive drift term. This term is dominant for very small
activity, since the diffusion term is negligible for very small
X�t� due to the X factor in the diffusion coefficient. The
positive drift term is X dependent and quickly decreases as X
increases, but strongly influences the avalanche statistics be-
cause it contributes to prevent avalanches from terminating
when X�t� approaches zero. We believe that this effect is
responsible for destroying the scaling of avalanche duration
and size �when these are defined in the type-I sense�. How-
ever, if the drift term is small compared to the diffusion term
for X�Xth, the drift term will not affect the avalanche statis-
tics if one employs a threshold Xth to define type-II ava-
lanches. This explains why scaling of size and duration is
restored when when type-II avalanches are introduced. An-
other generalization, which is essential for the avalanche sta-
tistics, is the Hurst exponent H of the noise term. The mean-
field approach to sandpiles implicitly assumes that H=1 /2.
However, this is not the case for the BTW and Zhang mod-
els. Actually, analysis of numerical simulations of the sand-
piles shows that H=0.37 for the BTW model and H=0.75 for
the Zhang model.

As in the mean-field model, the effect of the nonuniform
diffusion coefficient vanishes as the threshold increases.
Hence, by keeping the threshold Xth fixed and increasing N
we can, for the purposes of computing � and � for ava-
lanches where X never grows much greater than Xth, consider
the toppling activity as a fractional Browian motion. Using
the result of Ding and Yang �9�, that the PDF for the first
return time in fractional Brownian motion scales like ��H−2,
we obtain the general results �=2−H and �=2 / �1+H� �see
Refs. �10,11��.

Although the drift term and the nonuniformity of the dif-
fusion coefficient are not important to calculate the ava-
lanche exponents for type-II avalanches whose duration are
short enough not to be limited by the finite system size, they
are important on time scales where the toppling activity is a
stationary process. These are scales sufficiently long that the
toppling activity of avalanches is limited by the boundaries.
The stochastic equation �2� is fully equipped to handle these
time scales. A good example of the applicability of these
aspects of the stochastic model is the computation of the
PDF for the temporal fluctuations in the activity signal itself.

For weakly driven sandpiles the PDFs of the fluctuations
in the toppling activity are stretched exponentials. This result
is reproduced by simulation of the stochastic model �5�. For
stronger driving the activity exhibits fluctuations which are

more confined around a mean value where the drive and
dissipation balance each other. It has been claimed that the
PDFs of the toppling activity in sandpiles are examples of
universal Bramwell-Holdsworth-Pinton �BHP� distributions
�12,13�, a certain class of asymmetric PDFs commonly seen
in complex systems. Our sandpile simulations show that the
BHP distributions can only be seen if one fine-tunes the driv-
ing rate to a certain value, and for other driving rates the
PDFs belong to a much wider class of distributions. For suf-
ficiently strong drive Gaussian PDFs are observed. These can
also be obtained from the stochastic model if one correctly
models the drift term in this parameter range.

The rest of the paper is structured as follows: In Sec. II
we explain and derive the stochastic model for the toppling
activity. In Sec. III we compute the avalanche exponents for
type-I and type-II avalanches for the mean-field case �H
=1 /2� by solving a Fokker-Planck equation, and for H
�1 /2 we compute the avalanche exponents for type-II ava-
lanches as a function of H. The results allow us to predict the
avalanche exponents for sandpile models by computation of
the Hurst exponents. These results are then tested against
numerical simulations of the BTW and Zhang models and
are shown to agree well. In Sec. IV we present results which
indicate that type-II avalanches exhibit so-called finite-size
scaling, even though type-I avalanches do not.

In Sec. V we use the stochastic theory to calculate the
PDFs of the toppling activity signal, both for strongly driven
sandpiles and in the weak driving limit. The method is finally
applied to the fluctuations in kinetic energy in a two-
dimensional �2D� turbulence simulation. In this case the pro-
cess is given by a different kind of stochastic differential
equation

dX�t� = bdt + ceaXdW�t� . �3�

This equation gives rise to a Fischer-Tippet-Gumbel distri-
bution �14,15�, which is very close to the BHP distribution.
The differences between the stochastic models for sandpile
activity and kinetic energy fluctuations in 2D turbulence may
represent an essential distinguishing feature between 2D tur-
bulent dynamics and the kind of avalanching dynamics
which are observed in the classical sandpile models.

In Sec. VI we summarize and conclude the work.

II. STOCHASTIC MODEL

Let x�k� denote the number of overcritical sites at time
step k in a sandpile. A common feature of �height-type� sand-
pile models is that the typical size of increments 	x is pro-
portional to the square root of the toppling activity x. To be
more precise, the conditional probability of an increment
	x�k�=x�k+1�−x�k�, given x=x�k�, is

P�	x
x� =
1

	2
�2x
exp�−

	x2

2�2x
� . �4�

In Fig. 1 this property is verified for the BTW model �it
holds in the Zhang model as well�. This result can be ex-
plained as follows: At a given time k there are x=x�k� over-
critical sites, which we can enumerate i=1,2 , . . . ,x. In the
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next time step k→k+1 each site i distributes energy to its
neighbors and will usually �always in the BTW model� be-
come subcritical. If none of the neighbors receive sufficient
energy to become overcritical, the contribution to 	x from
site i is �i=−1. If exactly one of the neighbors become over-
critical, then �i=0 and so on. For the two-dimensional mod-
els the maximal value of �i is 4 �3 for the BTW model� since
a site maximally can excite four neighboring sites. Hence,
for this case, we consider �i to be random variables with
realizations in 
−1,0 ,1 ,2 ,3 ,4�. The randomness originates
from the local configuration in the vicinity of the overcritical
site; i.e., as an approximation we consider the different real-
izations of �i �at a fixed time k� as independent of each other.
We also consider the distribution of �i to be identical for all
overcritical sites and for all times. In this approximation the
total increment 	x can be written as a sum of independent,
identically distributed, random variables 	x=�1+ ¯ +�x,
and by the central-limit theorem we have �4� provided that
the local means ��� are zero. Then �2= ��2�
= �−1�2p−1+ ¯ +42p4, where p= �p−1 , . . . , p4� is the probabil-
ity vector for the local increment processes.

If the local processes at different times k are independent
of each other, then x�k� is a Markov process which satisfies a
stochastic difference equation

	x�k� = �	x�k�w�k� ,

where w�k� is a stationary, normalized, and uncorrelated
Gaussian process—i.e., w�k�=W�k+1�−W�k�, where W�t� is
the Wiener process. Under a rescaling of time t=k�t and
X�t�=x�k��x we have

	X�t� = X�t + �t� − X�t� = �x�x�k + 1� − x�k��

= �x1/2�	X�t��W�k + 1� − W�k��

= ��x

�t
�1/2

�	X�t��W�t + �t� − W�t�� .

In the last step we used the self-affinity of the Wiener

process, W�t /�t�=
d

�t−1/2W�t�. For �x=�t we have a well-
defined model in the limit �t, �x→0: namely, the Itô sto-
chastic differential equation �1�.

The first generalization of this model is obtained if we
relax the requirement that the local increment processes �i�k�
at time k be independent of the local increment processes
� j�k��, j=1, . . . ,x�k��, at previous times k��k. In this case
we need to model memory effects in the stationary Gaussian
process

w�k� =
	x�k�

�	x�k�
.

From the power spectrum or the variogram of the activity
signal from numerical simulation of the BTW and Zhang
models we find that w�k� can be accurately modeled as a
colored noise characterized by a Hurst exponent H. That is,
w�k�=WH�k+1�−WH�k�, with WH being a normalized �diffu-
sion coefficient=1� fractional Brownian motion �FBM�. If
we perform the rescaling t=k�t and X�t�=x�k��x in the case
H�1 /2, we obtain

	X�t� = � �x

�t2H�1/2
�	X�t��WH�t + �t� − WH�t�� ,

and by requiring that �x=�th, with h=2H, we obtain the
stochastic differential equation

dX�t� = �	X�t�dWH�t� . �5�

If we assume that the the stochastic process X�t� is self-affine

with self-affinity exponent h—i.e., X�st�=
d

shX�t�—it is easy
to verify that Eq. �5� is invariant with respect to the transfor-
mation t→st if h=2H �see Fig. 2�. Thus, the exponent h
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FIG. 1. �Color online� �a� A realization of the toppling activity x�k� in the BTW sandpile. �b� The increments 	x�k�=x�k+1�−x�k� of the
trace in �a�, showing that 	x�k� is large when x�k� is large. �c� Conditional PDFs of x+	x for x=10,20,30, respectively. �d� The conditional
mean and variance of 	x versus x. Time is measured in units of the discrete time steps in the code.
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=2H is the self-affinity exponent of the process X�t�, where
H is the Hurst exponent determining the color of the noise
process driving the stochastic differential equation. Observe
that the reason why h�H is the nonstationarity of the incre-
ment process due to the the factor 	X�t� in Eq. �5�. Note also
that the case H=1 /2 corresponds to h=1.

The self-affinity of X�t� described by Eq. �5� implies that
there is no upper bound on the fluctuations on increasing
time scales; i.e., Eq. �5� describes the activity of an infinite
sandpile where the activity is never influenced by the system
boundaries. From a physical viewpoint, however, it is more
interesting to consider the dynamics of a finite sandpile in
the continuum �thermodynamic� limit, and for this purpose it
is natural to let the scaling factor �x depend on N such that
XN=xN�x�N� is bounded in the limit N→�—for instance,
such that limN→� max�XN�=1. Such a bound on X�t� can be
obtained by the introduction of a drift term f�X�dt leaving
the stochastic equation in the form of Eq. �2�, where f�X� is
negative for large X. The form of f�X� can be found from
sandpile simulations by computing the conditional mean
E�	x 
x� of the increments and is shown in Fig. 1�d�. It ap-
pears that f�X� is a decreasing function, positive for small X
and negative for large X, and f�X�=0 for a characteristic
activity Xc�1. Without the stochastic term the drift term
establishes Xc as a stable fixed point for the dynamics.

Since f�X=0��0, solutions of Eq. �2� with initial condi-
tion X�0��0 exist and are positive for all t�0. This means
that while Eq. �5� has solutions for which X�t�=0 after a
finite time �avalanches terminate�, avalanches described by
Eq. �2� will never terminate in the meaning X�t�=0 �type-I
avalanches�. This signifies that type-I termination never oc-
curs in the continuum limit. If sandpiles of increasing N are
simulated and the type-I avalanche durations are computed
in the rescaled coordinates, the durations generally grow
without bounds for increasing N. The reason is that the ef-
fective threshold for type-I termination in a discrete sandpile
is xN=1, but in rescaled coordinates this threshold XN
=xN�x�N� goes to zero as N→�. As this rescaled threshold
vanishes, the duration in rescaled time goes to infinity. Since
the type-I termination is a discreteness effect, the resulting
PDFs of avalanche durations depend on N �system discrete-
ness� and are not power laws. As we shall demonstrate later,

the introduction of activity thresholds which are defined in
the rescaled coordinates, and hence remain finite in the con-
tinuum limit, will give rise to PDFs of durations of type-II
avalanches which converge to a specific power-law in this
limit.

Equation �2� remains valid also for sandpiles which are
driven by continuous feeding of sand during avalanches. The
drive adds a positive contribution to the drift function f�X�
for X�Xc, but a negative contribution for X�Xc, because
for large activites f�X� mainly accounts for the increased
boundary losses. The result is a steeper f�X�, which tends to
confine the activity closer to the fixed point Xc. On the other
hand, the increased drive also increases the diffusion coeffi-
cient �by increasing �� due to a larger number of new active
clusters initiated per unit time. The net effect is a positive
shift of Xc and that the fluctuations in X are confined to a
smaller region around Xc. For sufficiently strong drive the
range of variation in X�t� becomes so small that the diffusion
coefficient does not vary much. It is nevertheless important
to model it correctly in order to calculate the PDFs of the
fluctuations in toppling activity.

III. CALCULATION OF AVALANCHE EXPONENTS

We denote the stochastic model Eq. �1� �which is Eq. �2�
with H=1 /2 and f�X�=0� the mean-field model of sandpiles.
This is because its underlying assumptions and the results
derived from it coincide with what is known as the mean-
field solution of sandpiles in the literature �8�. Equation �1�,
together with its corresponding Fokker-Planck formulation,
can be used to calculate the avalanche exponents � and �.
The idea is that each avalanche corresponds to a realization
X�t� with some initial condition X�0�=X0 �X0
Xmax�. The
avalanche propagates until the realization X�t� terminates at
t= t1 in the meaning that X�t��0 for t� t1 and X�t1�=0. Cal-
culating the ratio of surviving realizations at different times t
in an ensemble will provide information about the distribu-
tion of avalanche durations. The avalanche size distribution
can then be obtained by using a general relationship between
the exponent �, the self-affinity exponent h=2H=1, and the
duration exponent � �Eq. �10� below�.
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FIG. 2. �Color online� �a� Determining h=2H in the BTW model through the calculation of the variance of the activity X�k� in avalanches
still running at time t. On very short time scales there is a Hurst exponent H=0.5 �the first dashed line has slope 2h=4H=2�; on longer time
scales the Hurst exponent is H=0.37 �the second dashed line has slope 2h=4H=1.5�. �b� Determining h=2H in the Zhang model by the
same method as in �a�. In this case we again have H�0.5 for short times, but H=0.75 for longer times. Time is measured in units of the
discrete time steps in the code.
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The scenario outlined above can be mathematically for-
mulated as follows: Let P�X , t�dX be the probability that X�t�
exists �avalanche lives longer than t� and that X�t�� �X ,X
+dX�. Then the the probability ��t� that an avalanche still
runs after a time t �we call it the survival function� is given
by

��t� = �
0

�

P�X,t�dX , �6�

and the probability density function for durations is pdur���
=−�����. The density P�X , t� can be calculated by solving the
Fokker-Planck equation

�P

�t
=

�2

2

�2

�X2 �XP� �7�

on X� �0,��, t� �0,��, subject to an absorbing boundary
condition limX→0XP�X , t�=0 and an initial condition
P�X ,0�=��X−X0�.

To correctly incorporate the absorbing boundary condition
we let U=XP and solve the corresponding Fokker-Planck
equation for U with boundary condition U�0�=0 to get

P�X,t� = �
0

�

G�X,Y,t�P�Y,0�dY ,

where

G�X,Y,t� =	 Y

4X
�

0

�

J1�s	Y�J1�s	X�e−��2s2/8�tsds .

Remark 1. The most elegant way to obtain the solution is
to use the integral transform pair

F̂�s� =
1

2
�

0

�

F�X�J1�s	X�	XdX ,

F�X� =
1

	X
�

0

�

F̂�s�J1�s	X�sds .

Taking the transform of the Fokker-Planck equation we ob-
tain the ordinary differential equation �ODE�

�P̂

�t
�s,t� = −

�2s2

4
P̂�s,t� ,

which we can solve and take the inverse transform. It is also
easy to solve the Fokker-Planck equation for U=XP by sepa-
ration of variables.

If P�X ,0�=��X−X0�, the solution of the absorbing bound-
ary problem is P�X , t�=G�X ,X0 , t�. Moreover,

lim
X→0

P�X,t� =
	X0

4
�

0

�

s2J1�s	X0�exp�−
�2s2

8
t�ds

=
4X0

�4t2 exp�−
2X0

�2t
� . �8�

From Eqs. �6�–�8� and the absorbing boundary condition at
X=0 we find that

d�

dt
= −

�2

2
lim
X→0

P�X,t� = −
2X0

�2t2 exp�−
2X0

�2t
� .

Hence the PDF for avalanche durations � is

pdur��� =
2X0

�2�2 exp�−
2X0

�2�
� ,

and for ��2X0 /�2 we have pdur�����−�, �=2.
This result crucially depends on the correct formulation of

the Fokker-Planck equation. If the stochastic process X�t�
were a classical Brownan motion, the Fokker-Planck equa-
tion would have the form of the standard heat equation, and
by performing the analogous calculations for this equation
we get pdur�����−3/2. The same scaling relation ���3/2� is
obtained if one �incorrectly� employs the Stratonovich for-
mulation of the Fokker-Planck equation rather than the Itô
form �7�.

From the derivation of the stochastic model we have seen
that the process X�t� has a self-affinity exponent h=2H �for
H=1 /2 we have h=1�. This means that X�t� disperses like
�th. For long avalanches this implies that the size of the
avalanche scales as

s = �
0

�

X�t�dt � ��

thdt � �h+1. �9�

This property is easy to check directly by studying the rela-
tion between duration and sizes of avalanches in sandpiles.
We find that the relation holds for large avalanches, whereas
for very small avalanches s��1. If the survival function
scales as ������−�=�−�+1, then using �9� together with
psize�s�ds= pdur���d� yields that if psize�s��s−�, then

� =
1 + h + �

1 + h
=

� + h

1 + h
. �10�

In the case H=1 /2 �h=1� and �=2 this gives �=3 /2. This
mean-field solution is known to be quite correct for the ran-
dom neighbor sandpile model �16�, but numerical simulation
shows that is fails for type-I as well as type-II avalanches in
the BTW and Zhang models. The computation of these ex-
ponents is shown for these models in Figs. 3 and 4 below.
The computation of h presented in Fig. 2, for type-I ava-
lanches yields H=h /2=0.37 for the BTW model and H
=0.75 for the Zhang model. This invalidates the Fokker-
Planck formulation, which can be strictly justified only for a
white noise source term �H=1 /2�. This is one reason for the
failure of the mean-field approach, but there are also others,
as will be discussed in the following.

For avalanche duration and size type-I avalanches do not
yield good power-law PDFs. The reason for this was dis-
cussed in the previous section: letting avalanches terminate
when xN�t�=0 in a sandpile with Nd sites corresponds to
using an effective threshold for termination in the rescaled
coordinates XN�t�, which goes to zero as N→�. The termi-
nation process depends on the discreteness of the system,
and one cannot expect convergence to scale-invariant behav-
ior in the continuum limit.

For type-II avalanches Figs. 3 and 4, below, show good
scaling for duration and size in BTW and Zhang models, but
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the scaling exponents differ from those of the mean-field
approach. The discrepancy is partly due to the fact that the
sandpile models have H�1 /2, but is also related to the ob-
servation that the introduction of a finite termination thresh-
old Xth modifies the exponent h as it appears in Eqs. �9� and
�10�. In the following we shall demonstrate that it is possible
to obtain analytical results for type-II avalanches from the
stochastic model which are in agreement with the corre-
sponding sandpile simulations.

First we observe that omission of the drift term will only
have effect on avalanches which are so large that they are
strongly limited by boundary dissipation. Next, we notice
that the effect of the positive drift term for small activities is
eliminated for type-II avalanches if Xth�Xc. In other words,
it is only the cutoffs of the power-law PDFs due to finite
system size which are lost by this omission. Thus, by con-
sidering a threshold Xth which is not much smaller than the
mean activity �X� and considering only avalanches which are
sufficiently small not to be influenced by the boundary dis-
sipation, we have X�t��Xth and thus can justify the substi-
tution X�t�→Xth�t� on the right-hand side in Eq. �5�. This
equation then reduces to the equation for an FBM with Hurst
exponent H. For an FBM the duration of avalanches is given
by the return time statistics for WH�t�, which is known to
scale like �H−2 �9�; i.e., we have

� = 2 − H . �11�

Now we need to address a slightly subtle point: the exponent
h, as defined in Eq. �9�, is h=2H for times � so large that
X����X�0�. Only on such time scales will the effect of the
factor 	X�t� in the stochastic term show up in the scaling.
However, this makes sense only for type-I avalanches where
we can choose X�0�
 �X�. For type-II avalanches we have
X�0��Xth, and it is more natural to consider the opposite

limit where � is so small that X̂����X���−Xth
X�0��Xth.
On these time scales the activity measured relative to the
threshold level scales like an FBM with Hurst exponent

H—i.e., X̂�t�� tH—because X�t��Xth. The avalanche size of

type-II avalanches defined as ŝ�����0
�X̂�t�dt then scales as

��1+H. Thus, for type-II avalanches we have h=H, and
hence Eq. �10� for this case reduces to

� =
2

1 + H
. �12�

In the mean-field limit H=1 /2 these exponents reduce to
those given on the right-hand column in Table I. These re-

sults, obtained analytically by approximating the coefficient
on the right-hand side in the stochastic equation by its
threshold value, have been verified by numerical solutions of
the full equation. Similar results for fractional Brownian mo-
tion have been obtained in �10,11�.

Equations �11� and �12� show that the calculations of �
and � reduce to determining the Hurst exponent of the nor-
malized increment process

w�k� =
	x�k�
	x�k�

,

which can easily be constructed from the toppling activity
signal. The corresponding Hurst exponent of the motion,

W�k� = �
i=0

k

w�k� ,

can be calculated using standard techniques such as taking
the power spectrum or constructing variograms. Alterna-
tively we can find H by computing the variance of X�t� in an
ensemble of realizations starting with small initial values of
X. This variance scales like �X2�t��� t2h= t4H. Figure 2 shows
this computation for the BTW and Zhang models. Since we
find H=0.37 for the BTW model, the type-II scaling expo-
nents are �=1.63 and �=1.49. This is verified by numerical
calculation of � and � using a threshold �x� /3, as shown in
Fig. 3.

In the Zhang model the process w�k� is more complicated.
Figure 4 shows that W�k� has a Hurst exponent H=0.5 on
short time scales and a different Hurst exponent H=0.75 on
longer time scales. This means that short avalanches should
satisfy the mean-field solution �=1.5 and �=1.33, whereas
longer avalanches should have exponents �=1.25 and �
=1.14. All of these predictions are verified by the direct cal-
culation of � and � as shown in Fig. 4.

For increasing N the long-avalanche scaling dominates an
increasing portion of the graph, so in the continuum limit the
mean-field solution only prevails at infinitely small scales in
rescaled coordinates. It is, however, a nice verification of our
method to see that the relation between the avalanche expo-
nents and the Hurst exponent correctly predicts the ava-
lanche exponents on short time scales as well. These results
on the BTW and Zhang models are summarized in Table II.

Remark 2. The numerical simulations of the Zhang model
are run using the standard toppling rule zi→0 and zj→zi
+zi /4 if zi is overcritical and j is a nearest neighbor of i.
Whenever the configuration has no overcritical sites a ran-
dom site i is chosen with respect to uniform probability and
a mass � is added to this site: zi=zi+�. In the simulations
presented in this paper we use �=0.1. In the strongly driven
Zhang models presented in Sec. V the feeding times �which
can now be during avalanches� are Poisson distributed and
we have used �=0.25. For the BTW model we have used the
standard toppling rule zi→zi−4 and zj =zj +1 throughout the
paper. As usual, a mass �=1 is added to a random site when-
ever the configuration is stable.

TABLE I. Exponents in mean-field solutions �H=1 /2� of the
stochastic equation with zero threshold �type-I� and large threshold
�type-II�.

Type-I avalanches Type-II avalanches�

H 1 /2 1 /2

h 1 1 /2

� 2 3 /2

� 3 /2 5 /4
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IV. FINITE-SIZE SCALING FOR TYPE-II AVALANCHES

A systematic technique for the determination of the ava-
lanche exponents � and � is the so called moment analysis
�3�. We illustrate how this works for the size distribution of
the BTW model. The analysis confirms our result �=0.49 for
the BTW model for type-II avalanches. Let psize�s ;N� be the
PDF of avalanche size s in the two-dimensional BTW model
with N2 sites and a threshold �x� /3. Let us assume finite-size
scaling �FSS�. This means that for N ,s�1 we have

psize�s;N� � s−�G�s/ND� , �13�

for some exponent D�0, where G�r� falls off quickly for
r�1. From Eq. �13� we observe that

�sq� � ND�1+q−���
1/ND

�

rq−�G�r�dr .

The integral tends to a constant as N→�, so we have �sq�
�ND�1+q−��. Thus, if we plot �sq� versus N in a log-log plot,
the slope of a fitted straight line will give us an estimate of
the exponent ��q�=D�1+q−�� for q=1,2 ,3 , . . .. Figure 5�a�
shows the computation of moments of s as a function of N
for type-II avalanches obtained from simulation of the BTW
model, and Fig. 5�b� shows the exponent ��q� versus q. We
find that ��q��q2.81, hence that D=2.81. Moreover, when

plotted in a log-log plot, the intersection of ��q� with the first
axis corresponds to the value �−1. Hence, based on our pre-
dictions, this intersection should be in the point 0.49. This
value is plotted as a dotted vertical line in Fig. 5�b�, confirm-
ing our result with good accuracy.

Strictly, this method requires that we have data collapse
when rescaling the avalanche sizes by s /ND. The shape of
the scaling function G�r� can be seen by plotting s�psize�s ;N�
versus s /ND. This is shown in Fig. 6. The data collapse for
the available system sizes is not perfect, but it is better than
for type-I avalanches. In fact, it seems that we might have
convergence to an N-independent scaling function as N→�
and that the lack of data collapse observed here is simply due
to the fact that we are not able to simulate sufficiently large
sandpiles. Thus the general lack of scaling for for type-I
avalanches, including the finite-size scaling, seems to be re-
stored for type-II avalanches.

V. PDFs OF THE TOPPLING ACTIVITY

When calculating the PDFs of the toppling activity signal
we have to distinguish between the weakly and strongly
driven sandpiles. For the weakly driven sandpiles the top-
pling activity covers a large range and the high-activity tail
of the PDF decays like a stretched exponential. This property
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FIG. 3. �Color online� �a� The survival function of avalanches in the BTW model computed with thresholds �X� /3 �type-II, thick curves�
and without thresholds �type-I, thin curves�. The dashed line corresponds to �=2−H=1.63. �b� The probability density function of ava-
lanches with size �s in the BTW model computed with thresholds �thick curves� �X� /3 and without thresholds �thin curves�. The dashed line
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can be reproduced by simulations of Eq. �2� where f�X� de-
cays exponentially to zero as X increases. Figure 7 compares
the PDF obtained from such a simulation of the stochastic
differential equation �run with H=0.37� with the PDF of the
weakly driven BTW model. The stochastic model is run by
initiating new avalanches �realizations� whenever the previ-
ous avalanche terminates, thus representing the classical
slow drive of the sandpile model. Since the Hurst exponents
of the Zhang and BTW models are different from 1 /2, the
application of the Fokker-Planck equation cannot be used to
calculate the shape of the PDFs, and thus we have to rely on
numerical simulations.

It is also interesting to study the PDFs of toppling activity
in strongly driven sandpiles—in particular, in light of recent
claims that this toppling activity belongs to a class of fluc-
tuating global quantities with a universal non-Gaussian shape
�12,13�. These PDFs are reminiscent of distributions derived
from the extreme value theory of statistics �14,15�, which
deals with a sequence of n identically distributed, indepen-
dent random variables y1 , . . . ,yn. If the tail of the PDF of
these variables decays faster than any power law, the PDF of
the mth largest value drawn from each of M realizations of
this sequence converge to the Gumbel class of stable distri-
butions in the limit M→�:

Gk�y� = K�e−��y−s�e−e−��y−s�
�m. �14�

The distribution for the largest value in each realization �m
=1� is often called the Fischer-Tippet-Gumbel �FTG� distri-

bution. The FTG distribution with zero mean and unit vari-
ance requires K=�=
 /	6 and s=�	6 /
, where ��0.58 is
the so-called Euler constant.

A distribution obtained from the spin-wave approximation
to the 2D XY model for equilibrium crititical fluctuations in a
finite-size magnetized system is the so-called BHP distribu-
tion �13�, which corresponds to Eq. �14� with k having the
noninteger value m=
 /2�1.57. With K=2.16, �=1.58, �
=0.93, and s=0.37 this distribution has zero mean and unit
variance. The difference between the normalized FTG and
BHP distributions is rather small, and it is difficult to distin-
guish between the two based on experimental and numerical
data.

Analysis of our simulations shows the claim that the top-
pling activity in strongly driven sandpiles has a PDF similar
to the BHP or FTG distributions is wrong, unless the driving
rate of the system is fine-tuned to some particular value.
Actually, the normalized PDFs of the toppling activity are
only insensitive to variation of the driving rate in the limits
of weak and strong drives. In the limit of weak drive the
PDFs are stretched exponentials as shown in Fig. 7, and in
the limit of strong drive the PDFs are close to Gaussian.

Figure 8 shows the PDFs of the toppling activity in the
strongly driven Zhang model where one unit � of mass is fed

TABLE II. Exponents for type-II avalanches computed from
H=0.37 in the BTW model and H=0.50 �short time scales� and
H=0.75 �long time scales� in the Zhang model.

BTW
Zhang

�short times�
Zhang

�long times�

H 0.37 0.50 0.75

� 1.63 1.50 1.25

� 1.49 1.33 1.14
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FIG. 5. �Color online� �a� The moments �sq� plotted as functions of N for the size distribution of the BTW model with respect to a
threshold �X� /3. �b� The shape of the structure function ��q�. The slope of the line is D=2.81 and the intersection with the first axis is �
−1=0.49. This value is indicated by the dotted vertical line.
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at a random site at Poisson-distributed times. The intervals � f
between two successive feeding events are then exponen-
tially distributed pf�� f�=�−1 exp�−� f /��, where ��1 that the
probability that a feeding event occurs at a given time step is
�−1. The case �=0 in Figure 8 stands for feeding at every
time step. For �=0 and �=2.3 the sandpile is running, in the
sense that avalanches never terminate. For �=3, the sandpile
is no longer running, and we see a deviation from the Gauss-
ian shape in the left tail of the PDF.

The Gaussian PDFs for strongly driven sandpiles can ac-
tually be explained in terms of the stochastic model in Eq.
�2�. The idea is that the range of fluctuations is confined by
the drift term f�X�, which now has a shape different from
that of the slowly driven sandpile. Figure 9 shows the graph
of both the diffusion coefficient D�X�=�2X /2 and the drift
term for the strongly driven Zhang model. The diffusion co-

efficient has the same form as for the slowly driven sandpile,
whereas the drift term is well approximated by a parabola:
f�X�=−aX2+bX+c. As explained in Sec. I this drift term
confines the fluctuations in toppling activity to a bounded
region around the positive root Xc of f�X�.

Due to the higher rate of random feeding, the memory
effects described by the Hurst exponent H�1 /2 becomes
inessential in the strongly driven sandpile, allowing us to
give an approximate description of the time-dependent PDF
through the Fokker-Planck equation

�P

�t
= −

�

�X
�f�X�P� +

�2

2

�2

�X2 �XP� . �15�

Stationary solutions of this equation must satisfy
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FIG. 7. �Color online� The PDF of the fluctuations in the top-
pling activity of the slowly driven BTW sandpile �thick solid curve�
together with the corresponding PDF produced from the stochastic
model �dashed curve�. The thin solid curve is a stretched exponen-
tial fitted to the latter �slightly shifted vertically for visibility�.
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FIG. 8. �Color online� The PDF of the fluctuations in the top-
pling activity of the strongly driven Zhang sandpile for different
values of � �see text�. The dashed curve is a fitted Gaussian.
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FIG. 9. �Color online� �a� Part of a time series for the toppling activity in a strongly driven Zhang sandpile. �b� The increments 	x�t�
=x�t+	t�−x�t� of the signal in �a�. The increments are large when the activity is large, as for the slowly driven case. �c� The conditional
variance of the increments 	x given the value of x. The dashed line is a linear fit. �d� The conditional mean of increments. The dashed curve
is a parabolic fit.
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−
d

dX
�f�X�P� +

�2

2

d2

dX2 �XP� = 0,

and substituting −aX2+bX+c for f�X�, we have the Gaussian
solution

P�X� =
1

	2
�
exp�−

�X − ��2

2�2 � ,

with

� =
b

a
and � =

1
	2

�

a
.

To further substantiate that the toppling dynamics of sand-
piles is fundamentally different from the fluctuating quanti-
ties that give rise to BHP and FTG distributions we apply the
above analysis to the fluctuations in total kinetic energy in a
simulation of two-dimensional Navier-Stokes turbulence.
The two-dimensional geometry is chosen because of the in-
verse energy cascade in k space caused by merging of small
vortices and formation of large structures, reminiscent of the
formation of large avalanches emerging from the localized
random perturbation in sandpile models. In the simulation,
energy is injected via a source term on a characteristic, small
spatial scale throughout the simulation area and is dissipated
as loss through the open boundary.

We compute the conditional mean and conditional vari-
ance of the increment process. These results are presented in
Fig. 10. We observe that contrary to the sandpile models, the
diffusion coefficient for this process grows exponentially
with X. Moreover, the drift term can be approximated by a
small positive constant except when the kinetic energy is
very large. This leads us to the stochastic differential equa-

tion �3�, and the corresponding Fokker-Planck equation is

�P

�t
= − b

�P

�X
+

c2

2

�2

�X2 �e2aXP� . �16�

Stationary solutions of this equation must satisfy

− b
dP

dX
+

c2

2

d2

dX2 �e2aXP� = 0.

We can put c=1 without loss of generality and obtain the
solution

P�X� =
1

�
e−�X−��/�e−e−�X−��/�

,

where �=1 /2a and �= �1 /2a�ln�1 /2a�. This is the standard
FTG distribution. Figure 11 shows the normalized PDF for
the fluctuations in total kinetic energy obtained from the fluid
simulation along with a normalized FTG distribution and the
PDF obtained from the simulation of Eq. �3�.

VI. CONCLUSIONS

When output from simple models for avalanching systems
are compared to observational data of real-world systems one
has to deal with the problem of establishing a correspon-
dence between the model variables and the observables of
the natural system. In general, this is usually not an obvious
task, since the model is usually not derived from first physi-
cal principles. The observation may be spatiotemporal, or
just temporal. Likewise we may choose to analyze the spa-
tiotemporal output from an avalanche model, or just some
spatially integrated quantity like the total activity variable in
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FIG. 10. �Color online� �a� Part of a time series for the kinetic energy in the 2D turbulence simulation. �b� The increments 	X�t�=X�t
+	t�−X�t� of the signal in �a�. As for the toppling activity in sandpiles, we see that the increments are large when the kinetic energy itself
is large. �c� The conditional variance of the increments 	X given the value of X. The dashed curve is a fitted exponential function. The inset
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purpose is to show that the logarithm can be well fitted by a straight line�. �d� The conditional mean of increments. We observe that the mean
is approximately constant for a large range of X.
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a sandpile, presented as a time series. In this paper we have
focused on the latter and, in particular, on reproducing the
statistical properties of such time series by modeling the sto-
chastic process by means of a stochastic differential equa-
tion.

Since our interest is avalanching dynamics, we focus on
avalanche statistics, and we have to face the problem of how
to define what an avalanche is when our observational data is
in the form of a time series. In general, we cannot expect that
such a definition is necessarily equivalent to a definition
based on spatiotemporal data, at least not in those cases
where feeding of new “sand grains” occurs while avalanches
are running. In those cases several spatially separated ava-
lanches may run simultaneously, but these cannot be sepa-
rated in a purely temporal analysis. For such a continuously
driven model system the temporal signal may never be zero,

and in an observational time series noise also makes it im-
possible to use a zero-signal condition to separate an ava-
lanching state from a quiet state. Thus, the natural way out is
to define the avalanching state by means of a threshold level
on the activity signal, giving rise to the concept of type-II
avalanches.

In this paper we have shown that the toppling activity in
sandpiles, and also global kinetic energy in a 2D fluid simu-
lation, can be modeled by stochastic differential equations.
The modeling clarifies that the main discrepancy between the
mean-field approach and the actual BTW and Zhang models
is related to the Hurst exponent of the activity process, which
is different for the two sandpile models. It also clarifies the
origin of the differences between the scaling exponents for
type-I and type-II avalanches, and why type-II avalanches
exhibit clearer scaling characteristics than type-I avalanches.

It follows from the theory how to rescale coordinates to
approach the thermodynamic limit, and the results obtained
for finite-size scaling in the BTW model in Sec. IV give a
strong indication that this limit actually exists.

For continuously driven sandpiles the stochastic equation
can be cast into a Fokker-Planck equation due to the loss of
memory caused by the random feeding. This allows an ana-
lytic solution for the activity PDF, which is a Gaussian for
the sandpile models, but gives rise to the FTG distribution
for the 2D fluid simulation. These results show that the non-
Gaussian universal PDF described in �12,13� is not relevant
for strongly driven sandpiles, but may be so for certain tur-
bulence models. The stochastic theory relates the difference
between Gaussian- and FTG-distributed activity signals to
the difference between a linear and exponential X depen-
dence of the diffusion coefficient in the stochastic equation.
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of kinetic energy in the 2D turbulence simulation together with a
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